218 research outputs found

    Molecular evolution of the membrane associated progesterone receptor in the Brachionus plicatilis (Rotifera, Monogononta) species complex

    Get PDF
    Author Posting. © Springer, 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Hydrobiologia 662 (2011): 99-106, doi:10.1007/s10750-010-0484-4.Many studies have investigated physiological roles of the membrane associated progesterone receptor (MAPR), but little is known of its evolution. Marked variations in response to exogenous progesterone have been reported for four brachionid rotifer species, suggesting differences in progesterone signaling and reception. Here we report sequence variation for the MAPR gene in the Brachionus plicatilis species complex. Phylogenetic analysis of this receptor is compared with relatedness based on cytochrome c oxidase subunit 1 sequences. Nonsynonymous to synonymous site substitution rate ratios, amino acid divergence, and variations in predicted phosphorylation sites are examined to assess evolution of the MAPR among brachionid clades.National Science Foundation grant BE/GenEn MCB-0412674E to TWS and DMW, and an NSF IGERT fellowship to HAS under DGE 0114400, supported this work

    Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer <it>Brachionus plicatilis</it>, a cryptic species complex consisting of at least 14 closely related species.</p> <p>Results</p> <p>We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called <it>B</it>. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence.</p> <p>Conclusions</p> <p>Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.</p

    Multidimensional sexual perfectionism and female sexual function: A longitudinal investigation

    Get PDF
    Research on multidimensional sexual perfectionism differentiates four forms of sexual perfectionism: self-oriented, partner-oriented, partner-prescribed, and socially prescribed. Self-oriented sexual perfectionism reflects perfectionistic standards people apply to themselves as sexual partners; partner-oriented sexual perfectionism reflects perfectionistic standards people apply to their sexual partner; partner-prescribed sexual perfectionism reflects people’s beliefs that their sexual partner imposes perfectionistic standards on them; and socially prescribed sexual perfectionism reflects people’s beliefs that society imposes such standards on them. Previous studies found partner-prescribed and socially prescribed sexual perfectionism to be maladaptive forms of sexual perfectionism associated with a negative sexual self-concept and problematic sexual behaviors, but only examined cross-sectional relationships. The present article presents the first longitudinal study examining whether multidimensional sexual perfectionism predicts changes in sexual self-concept and sexual function over time. A total of 366 women aged 17-69 years completed measures of multidimensional sexual perfectionism, sexual esteem, sexual anxiety, sexual problem self-blame, and female sexual function (cross-sectional data). Three to six months later, 164 of the women completed the same measures again (longitudinal data). Across analyses, partner-prescribed sexual perfectionism emerged as the most maladaptive form of sexual perfectionism. In the cross-sectional data, partner-prescribed sexual perfectionism showed positive relationships with sexual anxiety, sexual problem self-blame, and intercourse pain and negative relationships with sexual esteem, desire, arousal, lubrication, and orgasmic function. In the longitudinal data, partner-prescribed sexual perfectionism predicted increases in sexual anxiety and decreases in sexual esteem, arousal, and lubrication over time. The findings suggest that partner-prescribed sexual perfectionism contributes to women’s negative sexual self-concept and female sexual dysfunction

    Life-Cycle Switching and Coexistence of Species with No Niche Differentiation

    Get PDF
    The increasing evidence of coexistence of cryptic species with no recognized niche differentiation has called attention to mechanisms reducing competition that are not based on niche-differentiation. Only sex-based mechanisms have been shown to create the negative feedback needed for stable coexistence of competitors with completely overlapping niches. Here we show that density-dependent sexual and diapause investment can mediate coexistence of facultative sexual species having identical niches. We modelled the dynamics of two competing cyclical parthenogens with species-specific density-dependent sexual and diapause investment and either equal or different competitive abilities. We show that investment in sexual reproduction creates an opportunity for other species to invade and become established. This may happen even if the invading species is an inferior competitor. Our results suggests a previously unnoticed mechanism for species coexistence and can be extended to other facultative sexual species and species investing in diapause where similar density-dependent life-history switches could act to promote coexistence

    Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy

    Get PDF
    Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, and GMYC) to identify and provide support for the existence of 15 species within the complex. We used these results to explore phylogenetic signal in morphometric and ecological traits, and to understand correlation among the traits using phylogenetic comparative models. Our results support niche conservatism for some traits (e.g. body length) and phylogenetic plasticity for others (e.g. genome size)

    Analysis of Expressed Sequence Tags of the Cyclically Parthenogenetic Rotifer Brachionus plicatilis

    Get PDF
    Background. Rotifers are among the most common non-arthropod animals and are the most experimentally tractable members of the basal assemblage of metazoan phyla known as Gnathifera. The monogonont rotifer Brachionus plicatilis is a developing model system for ecotoxicology, aquatic ecology, cryptic speciation, and the evolution of sex, and is an important food source for finfish aquaculture. However, basic knowledge of the genome and transcriptome of any rotifer species has been lacking. Methodology/Principal Findings. We generated and partially sequenced a cDNA library from B. plicatilis and constructed a database of over 2300 expressed sequence tags corresponding to more than 450 transcripts. About 20% of the transcripts had no significant similarity to database sequences by BLAST; most of these contained open reading frames of significant length but few had recognized Pfam motifs. Sixteen transcripts accounted for 25% of the ESTs; four of these had no significant similarity to BLAST or Pfam databases. Putative up- and downstream untranslated regions are relatively short and AT rich. In contrast to bdelloid rotifers, there was no evidence of a conserved trans-spliced leader sequence among the transcripts and most genes were single-copy. Conclusions/Significance. Despite the small size of this EST project it revealed several important features of the rotifer transcriptome and of individual monogonont genes. Because there is little genomic data for Gnathifera, the transcripts we found with no known function may represent genes that are species-, class-, phylum- or even superphylum-specific; the fact that some are among the most highly expressed indicates their importance. The absence of trans-spliced leader exons in this monogonont species contrasts with their abundance in bdelloid rotifers and indicates that the presence of this phenomenon can vary at the subphylum level. Our EST database provides a relatively large quantity of transcript-level data for B. plicatilis, and more generally of rotifers and other gnathiferan phyla, and can be browsed and searched at gmod.mbl.edu

    Diapause as escape strategy to exposure to toxicants: response of Brachionus calyciforus to arsenic

    Get PDF
    Invertebrate organisms commonly respond to environmental fluctuation by entering diapause. Production of diapause in monogonont rotifers involves a previous switch from asexual to partial sexual reproduction. Although zooplankton have been used in ecotoxicological assays, often their true vulnerability to toxicants is underestimated by not incorporating the sexual phase. We experimentally analyzed traits involved in sexual reproduction and diapause in the cyclically parthenogenetic freshwater rotifer, Brachionus calyciflorus, exposed to arsenic, a metalloid naturally found in high concentrations in desert zones, focusing on the effectiveness of diapause as an escape response in the face of an adverse condition. Addition of sublethal concentrations of arsenic modified the pattern of diapause observed in the rotifer: investment in diapause with arsenic addition peaked earlier and higher than in non-toxicant conditions, which suggests that sexual investment could be enhanced in highly stressed environmental conditions by increased responsiveness to stimulation. Nevertheless, eggs produced in large amount with arsenic, were mostly low quality, and healthy-looking eggs had lower hatching success, therefore it is unclear whether this pattern is optimum in an environment with arsenic, or if rather arsenic presence in water bodies disturbs the optimal allocation of offspring entering diapause. We observed high accumulation of arsenic in organisms exposed to constant concentration after several generations, which suggests that arsenic may be accumulated transgenerationally. The sexual phase in rotifers may be more sensitive to environmental conditions than the asexual one, therefore diapause attributes should be considered in ecotoxicological assessment because of its ecological and evolutionary implications on lakes biodiversity

    Effect of female aging on the morphology and hatchability of resting eggs in the rotifer Brachionus plicatilis MĂĽller

    Get PDF
    This study examined the morphology and hatchability of Brachionus plicatilis resting eggs as a function of the aging of maternal fertilized mictic females. One-hundred twenty fertilized B. plicatilis (Australian strain) were individually cultured and monitored daily until death. All cultures were maintained at 25°C, 11 ppt, and fed the micro-algae Tetraselmis tetrathele. Resting eggs produced by the females were investigated using two parameters: egg morphology, and hatching rate. Under these culture conditions, females normally produce 1-6 (mean ± SD = 2.7 ± 1.2) resting eggs during their lifetime. However, the number of resting eggs with abnormal morphology increased as a function of maternal age. Among resting eggs with normal morphology (n = 225), 82.2% were produced during the first and second spawning, and had hatching rates of more than 60%, while the hatching rates were below 30% in resting eggs with a spawning order of >2. Thus, the quality of B. plicatilis resting eggs was negatively correlated with maternal age
    • …
    corecore